%0 Journal Article %T Novel insights into proteomic technologies and their clinical perspective %A Gunnar Dittmar %A Matthias Selbach %J Genome Medicine %D 2009 %I BioMed Central %R 10.1186/gm53 %X Continuing a highly successful series of meetings originally established by Angelika G£¿rg in Munich, scientists gathered for the first Proteomic Forum in Berlin. The five-day meeting organized by the German Society of Proteome Research included plenary lectures, poster sessions and workshops focusing on new developments in the field of proteome science. With about 500 participants, 60 speakers and 100 company representatives, the meeting provided a broad overview of the field. While virtually all areas of proteomics were presented, a clear trend towards mass spectrometry-based workflows was evident. Featured topics discussed in this report include proteomic techniques, biomarker discovery, proteomics of molecular machines and cell signaling.The increased mass accuracy, dynamic range, speed and sensitivity of mass spectrometers is currently the driving force for the rapid expansion in the number and quality of proteomic datasets. As the depth of proteome coverage increases, obtaining quantitative data becomes increasingly more important. Hence, quantitative proteomics was a common theme of the meeting, with methods ranging from simple spectral counting to stable isotope labeling-based approaches, such as stable isotope labeling with amino acids in cell culture (SILAC). John Yates III (The Scripps Research Institute, CA, USA) presented data on the use of spectral counting for label-free quantification to investigate the interactome of the cystic fibrosis transmembrane conductance regulator (CFTR). Importantly, quantification facilitates differentiation between specific interaction partners and non-specific contaminants, as well as assessment of the effect of drugs on the interactome. Yates also presented 15N labeling of rats as another approach for in vivo quantification. Christoph Turk (Max Planck Institute of Psychiatry, Munich, Germany) added a word of caution to this, as he found that 15N labeling of mice significantly affects animal behavior.A new advancement for %U http://genomemedicine.com/content/1/5/53