%0 Journal Article %T Differential regulation of intracellular factors mediating cell cycle, DNA repair and inflammation following exposure to silver nanoparticles in human cells %A PV AshaRani %A Swaminathan Sethu %A Hui Lim %A Ganapathy Balaji %A Suresh Valiyaveettil %A M Prakash Hande %J Genome Integrity %D 2012 %I BioMed Central %R 10.1186/2041-9414-3-2 %X We report that silver nanoparticles are capable of adsorbing cytosolic proteins on their surface that may influence the function of intracellular factors. Gene and protein expression profiles of Ag-np exposed cells revealed up regulation of many DNA damage response genes such as Gadd 45 in both the cell types and ATR in cancer cells. Moreover, down regulation of genes necessary for cell cycle progression (cyclin B and cyclin E) and DNA damage response/repair (XRCC1 and 3, FEN1, RAD51C, RPA1) was observed in both the cell lines. Double strand DNA damage was observed in a dose dependant manner as evidenced in ¦ÃH2AX foci assay. There was a down regulation of p53 and PCNA in treated cells. Cancer cells in particular showed a concentration dependant increase in phosphorylated p53 accompanied by the cleavage of caspase 3 and PARP. Our results demonstrate the involvement of NF¦ÊB and MAP kinase pathway in response to Ag-np exposure. Up regulation of pro-inflammatory cytokines such as interleukins (IL-8, IL-6), macrophage colony stimulating factor, macrophage inflammatory protein in fibroblasts following Ag-np exposure were also observed.In summary, Ag-np can modulate gene expression and protein functions in IMR-90 cells and U251 cells, leading to defective DNA repair, proliferation arrest and inflammatory response. The observed changes could also be due to its capability to adsorb cytosolic proteins on its surface.Wide spread use of nanoparticles has increased the risk of nanoparticle induced toxic effects in the environment and in humans. The rate of exposure increased progressively over the years when engineered nanomaterials were extensively used in a variety of industries. Intentional manipulation of nanoparticle surfaces with biomolecules and chemicals to cater various applications resulted in nanomaterials with unforeseeable activity. Large scale production and improper waste disposal may elevate human exposure to them and subsequent accumulation of these nanomaterial %K DNA damage %K Isothermal titration calorimetry %K inflammation %U http://www.genomeintegrity.com/content/3/1/2