%0 Journal Article %T Anticipating the $1,000 genome %A Elaine R Mardis %J Genome Biology %D 2006 %I BioMed Central %R 10.1186/gb-2006-7-7-112 %X In April 2003, 50 years after Watson and Crick first described the chemical structure of DNA [1], the DNA sequence that makes up the human genome was proclaimed "essentially complete" [2]. Following on from this, in October 2005, the project of the HapMap consortium to identify the locations of one million common single-nucleotide polymorphisms (SNPs) in the context of this reference human genome sequence were completed [3]. Accomplishing these two genomic milestones required the development, testing and implementation of technology platforms that could produce data at previously unprecedented throughputs, as well as of the bioinformatics tools and computational capabilities to analyze the resulting data and to interpret it in meaningful ways. It is this critical interplay of technology and bioinformatics that will usher in the next era of genome sequencing technology, commonly referred to as 'the $1,000 genome' on the basis of its targeted price per genome in US dollars; today, we find ourselves poised at the brink of this era. In this paradigm, the cost of determining an individual genome sequence would fall to a price of around $1,000, placing it firmly in the realm of advanced clinical diagnostic tests. As a result, determining a person's genome sequence might ultimately become an important first step upon entering a health insurance network or a health care provider's practice, akin to determining their height, weight and blood type, for example.Given this paradigm, one might ask why a $1,000 genome is an important or necessary goal to achieve. Fundamentally, even with the significant achievements of the HapMap Project [3], we have little context for comprehending the breadth of human genomic diversity, encompassing all types of variation beyond common single-nucleotide variants. Capturing this range of diversity, at the current cost of around $10-20 million per genome sequence, places it firmly outside the bounds of fiscal reality. Yet without this 'baseline', %U http://genomebiology.com/2006/7/7/112