%0 Journal Article %T The human urinary proteome contains more than 1500 proteins, including a large proportion of membrane proteins %A Jun Adachi %A Chanchal Kumar %A Yanling Zhang %A Jesper V Olsen %A Matthias Mann %J Genome Biology %D 2006 %I BioMed Central %R 10.1186/gb-2006-7-9-r80 %X We employed one-dimensional sodium dodecyl sulfate polyacrylamide gel electrophoresis and reverse phase high-performance liquid chromatography for protein separation and fractionation. Fractionated proteins were digested in-gel or in-solution, and digests were analyzed with the LTQ-FT and LTQ-Orbitrap at parts per million accuracy and with two consecutive stages of mass spectrometric fragmentation. We identified 1543 proteins in urine obtained from ten healthy donors, while essentially eliminating false-positive identifications. Surprisingly, nearly half of the annotated proteins were membrane proteins according to Gene Ontology (GO) analysis. Furthermore, extracellular, lysosomal, and plasma membrane proteins were enriched in the urine compared with all GO entries. Plasma membrane proteins are probably present in urine by secretion in exosomes.Our analysis provides a high-confidence set of proteins present in human urinary proteome and provides a useful reference for comparing datasets obtained using different methodologies. The urinary proteome is unexpectedly complex and may prove useful in biomarker discovery in the future.Urine is formed in the kidney by ultrafiltration from the plasma to eliminate waste products, for instance urea and metabolites. Although the kidney accounts for only 0.5% of total body mass, a large volume of plasma (350-400 ml/100 g tissue/min) flows into the kidney, generating a large amount of ultrafiltrate (150-180 l/day) under normal physiologic conditions [1,2]. Components in the ultrafiltrate such as water, glucose, amino acids, and inorganic salts are selectively reabsorbed, and less than 1% of ultrafiltrate is excreted as urine. Serum proteins are filtered based on their sizes and charges at the glomeruli [3]. After passing through glomeruli, abundant serum proteins such as albumin, immunoglobulin light chain, transferrin, vitamin D binding protein, myoglobin, and receptor-associated protein are reabsorbed, mainly by endocytic recept %U http://genomebiology.com/2006/7/9/R80