%0 Journal Article %T Complete DNA sequences of the plastid genomes of two parasitic flowering plant species, Cuscuta reflexa and Cuscuta gronovii %A Helena T Funk %A Sabine Berg %A Karin Krupinska %A Uwe G Maier %A Kirsten Krause %J BMC Plant Biology %D 2007 %I BioMed Central %R 10.1186/1471-2229-7-45 %X The newly sequenced plastid genomes of C. reflexa and C. gronovii reveal that the chromosome structures are generally very similar to that of non-parasitic plants, although a number of species-specific insertions, deletions (indels) and sequence inversions were identified. However, we observed a gradual adaptation of the plastid genome to the different degrees of parasitism. The changes are particularly evident in C. gronovii and include (a) the parallel losses of genes for the subunits of the plastid-encoded RNA polymerase and the corresponding promoters from the plastid genome, (b) the first documented loss of the gene for a putative splicing factor, MatK, from the plastid genome and (c) a significant reduction of RNA editing.Overall, the comparative genomic analysis of plastid DNA from parasitic plants indicates a bias towards a simplification of the plastid gene expression machinery as a consequence of an increasing dependency on the host plant. A tentative assignment of the successive events in the adaptation of the plastid genomes to parasitism can be inferred from the current data set. This includes (1) a loss of non-coding regions in photosynthetic Cuscuta species that has resulted in a condensation of the plastid genome, (2) the simplification of plastid gene expression in species with largely impaired photosynthetic capacity and (3) the deletion of a significant part of the genetic information, including the information for the photosynthetic apparatus, in non-photosynthetic parasitic plants.Parasitism among land plants has evolved independently in a variety of angiosperm families. Although knowledge of their biology is still rudimentary and limited to a relatively small number of species, it has nevertheless become apparent that a great diversity exists with respect to the anatomical and physiological adaptation to a parasitic lifestyle and the nutritional dependence on the host plants [1].The parasitic genus Cuscuta comprises a range of species with diff %U http://www.biomedcentral.com/1471-2229/7/45