%0 Journal Article %T A human functional protein interaction network and its application to cancer data analysis %A Guanming Wu %A Xin Feng %A Lincoln Stein %J Genome Biology %D 2010 %I BioMed Central %R 10.1186/gb-2010-11-5-r53 %X We have constructed a protein functional interaction network by extending curated pathways with non-curated sources of information, including protein-protein interactions, gene coexpression, protein domain interaction, Gene Ontology (GO) annotations and text-mined protein interactions, which cover close to 50% of the human proteome. By applying this network to two glioblastoma multiforme (GBM) data sets and projecting cancer candidate genes onto the network, we found that the majority of GBM candidate genes form a cluster and are closer than expected by chance, and the majority of GBM samples have sequence-altered genes in two network modules, one mainly comprising genes whose products are localized in the cytoplasm and plasma membrane, and another comprising gene products in the nucleus. Both modules are highly enriched in known oncogenes, tumor suppressors and genes involved in signal transduction. Similar network patterns were also found in breast, colorectal and pancreatic cancers.We have built a highly reliable functional interaction network upon expert-curated pathways and applied this network to the analysis of two genome-wide GBM and several other cancer data sets. The network patterns revealed from our results suggest common mechanisms in the cancer biology. Our system should provide a foundation for a network or pathway-based analysis platform for cancer and other diseases.High-throughput functional experiments, including genetic linkage/association studies, examinations of copy number variants in somatic and germline cells, and microarray expression experiments, typically generate multiple candidate genes, ranging from a handful to several thousands. These data sets are noisy and contain false positives in addition to genes that are truly involved in the biological process under study. An unsolved challenge is how to understand the functional significance of multi-gene data sets, extract true positive candidate genes, and tease out functional relationship %U http://genomebiology.com/2010/11/5/R53