%0 Journal Article %T Distribution of picophytoplankton communities from brackish to hypersaline waters in a South Australian coastal lagoon %A Mathilde Schapira %A Marie-Jeanne Buscot %A Thomas Pollet %A Sophie C Leterme %A Laurent Seuront %J Aquatic Biosystems %D 2010 %I BioMed Central %R 10.1186/1746-1448-6-2 %X Highest picophytoplankton abundances were recorded under salinity conditions ranging between 8.0% and 11.0% (1.3 กม 106 to 1.4 กม 106 cells ml-1). Two populations of picocyanobacteria (likely Synechococcus and Prochlorococcus) and 5 distinct populations of pico-eukaryotes were identified along the salinity gradient. The picophytoplankton cytometric-richness decreased with salinity and the most cytometrically diversified community (4 to 7 populations) was observed in the brackish-marine part of the lagoon (i.e. salinity below 3.5%). One population of pico-eukaryote dominated the community throughout the salinity gradient and was responsible for the bloom observed between 8.0% and 11.0%. Finally only this halotolerant population and Prochlorococcus-like picocyanobacteria were identified in hypersaline waters (i.e. above 14.0%). Salinity was identified as the main factor structuring the distribution of picophytoplankton along the lagoon. However, nutritive conditions, viral lysis and microzooplankton grazing are also suggested as potentially important players in controlling the abundance and diversity of picophytoplankton along the lagoon.The complex patterns described here represent the first observation of picophytoplankton dynamics along a continuous gradient where salinity increases from 1.8% to 15.5%. This result provides new insight into the distribution of pico-autotrophic organisms along strong salinity gradients and allows for a better understanding of the overall pelagic functioning in saline systems which is critical for the management of these precious and climatically-stress ecosystems.The ubiquitous distribution of picophytoplankton and their importance in terms of biomass and production, make them a critical component of food web and carbon cycling in marine systems [1-3]. In particular the partitioning between picophytoplankton and larger cells reflects the source and cycling of nutrients [4] and influences the pathway of matter transfer to higher trophic %U http://www.aquaticbiosystems.org/content/6/1/2