%0 Journal Article %T Culture independent molecular analysis of bacterial communities in the mangrove sediment of Sundarban, India %A Abhrajyoti Ghosh %A Nirmalya Dey %A Amit Bera %A Amit Tiwari %A KB Sathyaniranjan %A Kalyan Chakrabarti %A Dhrubajyoti Chattopadhyay %J Aquatic Biosystems %D 2010 %I BioMed Central %R 10.1186/1746-1448-6-1 %X Two 16 S rRNA gene libraries were constructed and partial sequencing of the selected clones was carried out to identify bacterial strains present in the sediment. Phylogenetic analysis of partially sequenced 16 S rRNA gene sequences revealed the diversity of bacterial strains in the Sundarban sediment. At least 8 different bacterial phyla were detected. The major divisions of detected bacterial phyla were Proteobacteria (alpha, beta, gamma, and delta), Flexibacteria (CFB group), Actinobacteria, Acidobacteria, Chloroflexi, Firmicutes, Planctomycetes and Gammatimonadates.The gammaproteobacteria were found to be the most abundant bacterial group in Sundarban sediment. Many clones showed similarity with previously reported bacterial lineages recovered from various marine sediments. The present study indicates a probable hydrocarbon and oil contamination in this sediment. In the present study, a number of clones were identified that have shown similarity with bacterial clones or isolates responsible for the maintenance of the S-cycle in the saline environment.The majority (60-70%) of the world tropical and subtropical coastlines are covered with mangrove ecosystems. Mangroves are known to be highly productive ecosystems and have immense ecological values. They protect and stabilize the costal zones, nourish and nurture the coastal water with nutrients. They play important role as the feeding and breeding areas of many organisms including plants, animals and micro-organisms. The microbial community in the mangrove sediment is strongly influenced by bio-geographical, anthropological and ecological properties. These properties include food web in the ecosystem, nutrient cycling and the presence of organic and inorganic matters.During the past decade, the development of molecular techniques using nucleic acids has led to many new findings in the studies of microbial ecology [1]. As a basic approach to clarify the microbial communities, 16S rRNA genes are amplified by PCR fro %U http://www.aquaticbiosystems.org/content/6/1/1