%0 Journal Article %T Exploiting the inter-strain divergence of Fusarium oxysporum for microbial bioprocessing of lignocellulose to bioethanol %A Shahin S Ali %A Mojibur Khan %A Brian Fagan %A Ewen Mullins %A Fiona M Doohan %J AMB Express %D 2012 %I Springer %R 10.1186/2191-0855-2-16 %X Although much progress has been made in developing and optimising the many areas of biomass biorefining (Tian et al. 2010), the efficient production of bioethanol fuel from lignocellulosic biomass remains an obstinate challenge. Conventionally, it involves the thermo-chemical hydrolysis of hemicellulose, followed by enzymatic hydrolysis of cellulose and yeast-based fermentation of the resulting sugars. Alternatively, some microbes can enzymatically hydrolyse cellulose and hemicellulose to sugars and then ferment the released hexose and pentose sugars (glucose, mannose, galactose, xylose and arabinose), in a process called consolidated bioprocessing (CBP) (Lynd et al. 2005). The bottleneck with regard to CBP is the scarcity of suitable microorganisms that exhibit high-end efficiency with regard to both substrate utilisation and product formation. Much research is focussed on finding and designing such organisms, driven by the significant reductions in both capital and operational cost that they will bring to lignocellulose bioprocessing. In parallel, finding a way to reduce by-product accumulation such as xylitol, acetaldehyde, glycerol, formic, lactic, and acetic acids is also a major focus area of lignocellulosic bioethanol research.Plant-pathogenic microbes have evolved the capacity to break down the lignocellulose present in host cell walls and thus breach the barriers to invasion and host colonization. The plant-pathogenic fungi Fusarium oxysporum and Neurospora crassa have been shown to facilitate the CBP of lignocellulose to bioethanol (Deshpande et al. 1986; Christakopoulos et al. 1991a; Dogaris et al. 2009). The species F. oxysporum represents a group of pathogenically and genetically diverse strains (Khilare et al. 2010). Singh & Kumar (1991) have described many distinguishing features of F. oxysporum in comparison to other organisms when it comes to fermentation of lignocellulosic materials to ethanol which makes it a preferred choice for further scientifi %K Fungal biomass %K Endoglucanase %K Endoxylanase %K Consolidated bioprocessing %K Solid-state cultivation %U http://www.amb-express.com/content/2/1/16