%0 Journal Article %T Mismatch between shape changes and ecological shifts during the post-settlement growth of the surgeonfish, Acanthurus triostegus %A Bruno Fr¨¦d¨¦rich %A Orphal Colleye %A Gilles Lepoint %A David Lecchini %J Frontiers in Zoology %D 2012 %I BioMed Central %R 10.1186/1742-9994-9-8 %X After reef settlement, stable isotope composition of carbon and nitrogen revealed a change from a zooplanktivorous to a benthic algae diet. The large amount of algae (> 75% of stomach contents) found in the digestive tract of small juveniles (25¨C30 mm SL) suggested the diet shift is rapid. The post-settlement growth of A. triostegus is highly allometric. The allometric shape changes mainly concern cephalic and pectoral regions. The head becomes shorter and more ventrally oriented during growth. Morphological changes are directly related to the diet shift given that a small mouth ventrally oriented is particularly suited for grazing activities at the adult stage. The pectoral fin is more anteriorely and vertically positioned and its basis is larger in adults than in juveniles. This shape variation had implications for swimming performance, manoeuvrability, turning ability and is related to habitat shift. Acanthurus triostegus achieves its main transformation of body shape to an adult-like form at size of 35¨C40 mm SL.Most of the shape changes occurred after the reef colonization but before the transition between juvenile habitat (fringing reef) and adult habitat (barrier reef). A large amount of allometric variation was observed after diet shift from zooplankton to benthic algae. Diet shift could act as an environmental factor favouring or inducing morphological changes. On the other hand, the main shape changes have to be achieved before the recruitment to adult populations and start negotiating the biophysical challenges of locomotion and feeding in wave- and current-swept outer reef habitat.Ontogenetic shifts in diet and habitat are the norm for demersal marine fishes. The majority of coral reef fishes have stage-structured life histories with two main distinct stages including a pelagic larval stage capable of long-distance dispersal and a demersal stage (usually juveniles and adults) [1]. The transition from the pelagic oceanic environment to benthic reef environ %K Acanthuridae %K Allometry %K Diet %K Geometric morphometrics %K Habitat change %K Moorea Island %K Reef fishes %U http://www.frontiersinzoology.com/content/9/1/8