%0 Journal Article %T Detection of cancer cells in the cerebrospinal fluid: current methods and future directions %A Cody L Weston %A Michael J Glantz %A James R Connor %J Fluids and Barriers of the CNS %D 2011 %I BioMed Central %R 10.1186/2045-8118-8-14 %X The ability to detect and characterize malignant cells in the CSF derived from primary neural and extraneural cancers may allow us to answer fundamental questions about the biology of metastatic spread through identification and characterization of the cancer cell populations capable of infiltrating the CSF. Cancer may reach the CSF through hematogenous spread, direct extension from the tumor itself, or by migration along perineural or perivascular spaces [1,2]. Improved detection of CSF malignancy is a clinical imperative as well, since current diagnostic techniques are insensitive, resulting in a delay in diagnosis until disease-related symptoms are profound and irreversible, and therapeutic options are limited or non-existent. Cancer cells infiltrating the CSF can lead to neoplastic meningitis, a rapidly progressive and fatal condition characterized by serious neurologic deficits [3]. Across all cancer diagnoses, leptomeningeal involvement is seen in roughly 5% of patients, and carries a poor prognosis with median survival under 3 months characterized by rapid neurologic decline [3,4]. The biochemical and molecular mechanisms underlying this process remain unknown. Their elucidation may dramatically improve our ability to predict, treat, and even prevent this increasingly frequent and uniformly fatal complication of cancer. The primary aim of this review is to describe the state of the field of cancer cell detection in the CSF with the goal of inspiring translational scientists to develop the next generation of clinical detection strategies.A prior review by Chamberlain and colleagues described the three primary methods of detecting leptomeningeal metastasis and the spread of tumor cells into the CSF: CSF cytology, neurologic examination, and radiographic imaging of the neuraxis [5]. While all three of these techniques can be used to diagnose leptomeningeal metastases, they all suffer from limitations and generally only detect the presence of tumor late in the di %U http://www.fluidsbarrierscns.com/content/8/1/14