%0 Journal Article %T A Simplification Algorithm to Support Vector Machines for Regression
回归型支持向量机的简化算法 %A TIAN Sheng-feng %A HUANG Hou-kuan %A
田盛丰 %A 黄厚宽 %J 软件学报 %D 2002 %I %X Aiming at the computational complexity resulted from the large amounts of support vectors when the support vector machines (SVMs) are used in function estimation, a simplification algorithm is presented to reduce the number of support vectors and simplify applications. By the adaptation of the simplification algorithm, the LS-SVM (least square support vector machine) algorithm can be combined with SMO (sequential minimal optimization) algorithm to achieve good results with high learning efficiency and a few number of support vectors. %K support vector machine %K regression %K machine learning %K computational complexity %K algorithm
支持向量机 %K 回归 %K 机器学习 %K 计算复杂性 %K 算法 %U http://www.alljournals.cn/get_abstract_url.aspx?pcid=5B3AB970F71A803DEACDC0559115BFCF0A068CD97DD29835&cid=8240383F08CE46C8B05036380D75B607&jid=7735F413D429542E610B3D6AC0D5EC59&aid=D2DA9F4546A5BC59&yid=C3ACC247184A22C1&vid=FC0714F8D2EB605D&iid=B31275AF3241DB2D&sid=827D3389B7A27A64&eid=B9196C90508452FE&journal_id=1000-9825&journal_name=软件学报&referenced_num=14&reference_num=5