%0 Journal Article %T Super-Linearly Convergent BP Learning Algorithm for Feedforward Neural Networks
前馈网络的一种超线性收敛BP学习算法 %A LIANG Jiu-zhen %A HE Xin-gui %A HUANG De-shuang %A
梁久祯 %A 何新贵 %A 黄德双 %J 软件学报 %D 2000 %I %X In this paper, some shortages of traditional BP learning algorithm are analyzed. To avoid these shortages, a modified BP learning algorithm is proposed. It is s hown that this algorithm is super-linearly convergent under certain conditions. This algorithm can overcome some shortages of traditional BP learning algorithm , and has the same order of computation complexity as the traditional BP algorit hm. Finally, two computing examples are given. Simulation results illustrate tha t this algorithm is highly effective and practicable. %K Feedforward neural network %K BP learning algorithm %K convergence %K super-linear c onvergence
前馈神经网络 %K BP学习算法 %K 收敛性 %K 超线性收敛. %U http://www.alljournals.cn/get_abstract_url.aspx?pcid=5B3AB970F71A803DEACDC0559115BFCF0A068CD97DD29835&cid=8240383F08CE46C8B05036380D75B607&jid=7735F413D429542E610B3D6AC0D5EC59&aid=1A48291C6C19F51B&yid=9806D0D4EAA9BED3&vid=708DD6B15D2464E8&iid=5D311CA918CA9A03&sid=6B48C3DA6EA0194C&eid=BE1F29C193C78397&journal_id=1000-9825&journal_name=软件学报&referenced_num=17&reference_num=3