%0 Journal Article
%T Preserving-Convexity and Fractal Properties of a Nonlinear Subdivision Scheme
一类非线性细分格式的保凸与分形性质
%A DING You dong
%A HUA Xuan ji
%A
丁友东
%A 华宣积
%J 软件学报
%D 2000
%I
%X Based on the analysis of the classifical 4 point linear interpolatory subdivision scheme introduced by Dyn, a functional nonlinear discrete subdivision scheme is presented. This scheme has the preserving convexity property, i.e., for any given convex discrete data, when some conditions are satisfied, the subdivision polygon curve produced in any step by this scheme is convex, so the limit curve is also convex. Some numerical examples show that the limit curves are fractal like when the smooth condition is not satisfied.
%K Nonlinear
%K subdivision scheme
%K preserving convexity
%K fractal
非线性
%K 细分格式
%K 保凸
%K 分形.
%U http://www.alljournals.cn/get_abstract_url.aspx?pcid=5B3AB970F71A803DEACDC0559115BFCF0A068CD97DD29835&cid=8240383F08CE46C8B05036380D75B607&jid=7735F413D429542E610B3D6AC0D5EC59&aid=6BDDE01A47E34A31&yid=9806D0D4EAA9BED3&vid=708DD6B15D2464E8&iid=9CF7A0430CBB2DFD&sid=08DDB398556FE547&eid=A1CD1DC26CC35415&journal_id=1000-9825&journal_name=软件学报&referenced_num=3&reference_num=11