%0 Journal Article %T CONSTRUCTION OF GEOMETRIC PARTIAL DIFFERENTIAL EQUATIONS IN COMPUTATIONAL GEOMETRY
第一类双变量Chebyshev多项式的最小零偏差性质研究 %A Li Qiang %A Sun Jiachang %A
李强 %A 孙家昶 %J 计算数学 %D 2008 %I %X By using the theroy of extremal signature proposed by Rivlin and Shapiro,we prove that some of the Chebyshev polynomials in two variables of the first kind presented in are exactly the polynomials of least deviation from zero on the so-called Steiner's domain. Based on the sets of critial points of these Chebysev polynomials,we present several cubature formulas with certain degree. %K Chebyshev polynomials in two variables of the first kind %K least deviation from zero %K generalized cosine function %K cubature formulas
第一类双变量Chebyshev多项式 %K 最小零偏差 %K 广义余弦函数 %K 求积公式 %U http://www.alljournals.cn/get_abstract_url.aspx?pcid=6E709DC38FA1D09A4B578DD0906875B5B44D4D294832BB8E&cid=37F46C35E03B4B86&jid=CC77F3CEF526D9CF0B3021650FB4E57E&aid=0CCDB3B05E1897F45F2D455287113C3E&yid=67289AFF6305E306&vid=340AC2BF8E7AB4FD&iid=38B194292C032A66&sid=E2B9962CCD971A0D&eid=E39A3F4E3A67639B&journal_id=0254-7791&journal_name=计算数学&referenced_num=0&reference_num=18