%0 Journal Article %T A NUMERICAL METHOD FOR THE SPACE-TIME FRACTIONAL CONVECTION-DIFFUSION EQUATION
空间-时间分数阶对流扩散方程的数值解法 %A Qin Pingyang %A Zhang Xiaodan %A
覃平阳 %A 张晓丹 %J 计算数学 %D 2008 %I %X In this paper, a space-time fractional convection-diffusion equation is considered. The equation is obtained from the classical convection-diffusion equation by replacing the first-order time derivative, the second-order space derivative with fractional derivatives of order $\alpha$($0<\alpha<1$), $\beta$ ($1<\beta<2$)respectively. An implicit difference scheme is presented. It is shown that the method is unconditional stable and the convergence order of the method is $O(\tau+h)$ . Finally, some numerical examples are given. %K convection-diffusion equation %K fractional-order derivative %K implicit difference scheme %K stability %K convergence
对流扩散方程 %K 分数阶导数 %K 隐式差分格式 %K 稳定性 %K 收敛性 %U http://www.alljournals.cn/get_abstract_url.aspx?pcid=6E709DC38FA1D09A4B578DD0906875B5B44D4D294832BB8E&cid=37F46C35E03B4B86&jid=CC77F3CEF526D9CF0B3021650FB4E57E&aid=8F8340B784A96905B2031B42B03D2A86&yid=67289AFF6305E306&vid=340AC2BF8E7AB4FD&iid=38B194292C032A66&sid=407C905D8F0449C4&eid=85002451B65CE0D1&journal_id=0254-7791&journal_name=计算数学&referenced_num=0&reference_num=10