%0 Journal Article %T NON-UNIFORM QUADRATIC WEIGHTED TRIGONOMETRIC HYPERBOLIC SPLINE CURVES
非均匀的二次三角双曲加权样条曲线 %A Xie Jin %A Tan Jieqing %A Li Shengfeng %A Deng Siqing %A
谢进 %A 檀结庆 %A 李声锋 %A 邓四清 %J 计算数学 %D 2010 %I %X A method of generating quadratic blending spline curves based on weighted trigonometric and hyperbolic polynomials is presented in this paper, which shares many important properties of quadratic non-uniform B-splines. Here weight coefficients are also shape parameters, which are called weight parameters. The interval 0,1] of weight parameter values can be extended to -2.6482 ,3.9412]. Taking different values of the weight parameter, one can not only totally or locally adjust the shape of the curves but also change the type of some segments of a curve among trigonometric or hyperbolic polynomials. Without using multiple knots or solving system of equations and letting one or several weight parameter be -2.6482, the curve can interpolate certain control points or control polygon edge directly. Moreover, it can represent ellipse (circle) and hyperbola exactly. %K trigonometric and hyperbolic polynomial %K non-uniform knot %K weight parameter %K totally or locally adjust %K interpolation %K blending curve segment
三角双曲多项式 %K 非均匀节点 %K 权参数 %K 整体与局部调控 %K 插值 %K 混合曲线段 %U http://www.alljournals.cn/get_abstract_url.aspx?pcid=6E709DC38FA1D09A4B578DD0906875B5B44D4D294832BB8E&cid=37F46C35E03B4B86&jid=CC77F3CEF526D9CF0B3021650FB4E57E&aid=8ADB7B3A9E884E36ED96635F6F448A3E&yid=140ECF96957D60B2&vid=9971A5E270697F23&iid=0B39A22176CE99FB&sid=2922B27A3177030F&eid=3F0AF5EDBC960DB0&journal_id=0254-7791&journal_name=计算数学&referenced_num=0&reference_num=14