%0 Journal Article %T ON POSITIVE SYMMETRIZABLE MATRICES AND PRE-SYMMETRY ITERATION ALGORITHMS
正定可对称化矩阵与预对称迭代算法 %A SUN Jiachang %A
孙家昶 %J 计算数学 %D 2000 %I %X Second order elliptic equation is a class of mathematical model for scientific computing, such as convex-diffusion, oil-reservoir simulation, etc. Based on intrinsic symmetrizable property, a new concept on positively symmetrizable matrix is proposed in this paper. We point that for such kind of equation systems, it is possible to adopt special preconditioning CG algorithm, e.g. 1]-3], instead of the usual iteration procedure for general non-symmetry systems, such as GMRES 3]-4] ) BiCGSTAB 5]. Numerical tests show the new algorithm is effective for solving this kind of second order elliptic discrete systems. %K positive symmetrizablity %K elliptic discrete equation %K pre conditioning iteration %K PCG
椭圆离散方程 %K 预对称迭代算法 %K 正定可对称化矩阵 %U http://www.alljournals.cn/get_abstract_url.aspx?pcid=6E709DC38FA1D09A4B578DD0906875B5B44D4D294832BB8E&cid=37F46C35E03B4B86&jid=CC77F3CEF526D9CF0B3021650FB4E57E&aid=C9E6EDC50A619189&yid=9806D0D4EAA9BED3&vid=BC12EA701C895178&iid=38B194292C032A66&sid=9EF602EA28138BEA&eid=05340B75C67FF664&journal_id=0254-7791&journal_name=计算数学&referenced_num=8&reference_num=8