%0 Journal Article %T CENERALIZED POLAR DECOMPOSITION
广义极分解 %A 孙继广 %A 陈春晖 %J 计算数学 %D 1989 %I %X By a generalized polar decomposition of an m×n matrix A, it is meant that A can bedecomposed as A=QH, where Q is an m×n subunitary matrix, and H is a Hermite positivesemidefinite matrix. In this paper, the uniqueness theorem of generalized polar decomposi-tiion, the best approximation property of the subunitary factor, the perturbation bounds forthe generalized polar factors Q and H, and a quadratically convergent method are studied. So-me numerical examples are also given. %K 复阵 %K 酉阵 %K 次酉阵 %K 广义极分解 %U http://www.alljournals.cn/get_abstract_url.aspx?pcid=6E709DC38FA1D09A4B578DD0906875B5B44D4D294832BB8E&cid=37F46C35E03B4B86&jid=CC77F3CEF526D9CF0B3021650FB4E57E&aid=E9F55B30C70D2F0982CA451035C72D6B&yid=1833A6AA51F779C1&vid=708DD6B15D2464E8&iid=38B194292C032A66&sid=30897FA31CA3354D&eid=9F8C5EF901EA1E7E&journal_id=0254-7791&journal_name=计算数学&referenced_num=9&reference_num=3