%0 Journal Article %T THE FULLY IMPLICIT DIFFERENCE METHODS FOR A STIFF SYSTEM OF CONSERVATION LAWS
一个刚性守恒律方程组的全隐式差分方法 %A Tang Huazhong %A
汤华中 %J 计算数学 %D 2001 %I %X This paper is interested in a system of conservation laws with a stiff relaxation term arised in viscoelasticity. The properties of a class of fully implicit finite difference methods approximating this system are analyzed, which include maximum principles, bounds on the total variation, Ll-bounds, and L1-continuity estimates in term of some conserved physical quantity and this characteristic variables generated by difference schemes with proper initial data. These estimates are necessary for the existence of a bounded-total variation (BV) solution. Furthermore, we show that numerical entropy inequalities for some convex entropy pairs of the fully system hold. %K Finite difference scheme %K hyperbolic conservation laws %K entropy inequality
有限差分格式 %K 双曲型守恒律 %K 数值熵条件 %K 特征值 %K 全隐式差分格式 %K 刚性守恒律方程组 %U http://www.alljournals.cn/get_abstract_url.aspx?pcid=6E709DC38FA1D09A4B578DD0906875B5B44D4D294832BB8E&cid=37F46C35E03B4B86&jid=CC77F3CEF526D9CF0B3021650FB4E57E&aid=38E10DE0D9E9AF7A&yid=14E7EF987E4155E6&vid=EA389574707BDED3&iid=0B39A22176CE99FB&sid=28F8B56DB6BEE30E&eid=09E495F616948E78&journal_id=0254-7791&journal_name=计算数学&referenced_num=0&reference_num=20