%0 Journal Article %T ON THE MINIMUM EIGENVALUE SEPARATION FOR MATRICES
矩阵特征值分离度的下界 %A 孙家昶 %J 计算数学 %D 1985 %I %X The minimum eigenvalue separation of a matrix is defined as the minimum of di-stances between distinet eigenvalues. Some lower bounds of the separations are derivedfor tridiagonal matrices in this paper. For Hermitian matrices, a Lonezos algorithm isdesigned to reduce them to tridiagonals with special forms. Two examples are givento show the improvement of the given estimation. %U http://www.alljournals.cn/get_abstract_url.aspx?pcid=6E709DC38FA1D09A4B578DD0906875B5B44D4D294832BB8E&cid=37F46C35E03B4B86&jid=CC77F3CEF526D9CF0B3021650FB4E57E&aid=0E104C843473421A89D7EA13622950C1&yid=74E41645C164CD61&vid=DF92D298D3FF1E6E&iid=38B194292C032A66&sid=F637763636425CAF&eid=E3094127AA4ABC1A&journal_id=0254-7791&journal_name=计算数学&referenced_num=0&reference_num=0