%0 Journal Article %T THE LOCAL CONVERGENCE OF LEAST CHANGE QUASINEWTON METHODS FOR NONLINEAR PROGRAMMING PROBLEMS
非线性规划中最小变化拟Newton方法的局部收敛性 %A 邹志鸿 %A 盛松柏 %J 计算数学 %D 1992 %I %X In this paper, the local convergence of the quasi-Newton methods of Colemanand Conn (1984) for the nonlinear programming problems is analysed, and the leastchange updates of Dennis and Schnabel(1979), and Grzegorski (1985) are used toapproximate the projected Hessian matrix of the Lagrangian function. Furthermore,it is demonstrated that the sequence {x_i} will converge 2-step Q-superlinearly to asolution x~*. The discussion includes fixed-scale and rescaled least change quasi-Newton updates, and their inverse quasi-Newton updates. %K 非线性规划 %K 拟牛顿法 %K 局部收敛性 %U http://www.alljournals.cn/get_abstract_url.aspx?pcid=6E709DC38FA1D09A4B578DD0906875B5B44D4D294832BB8E&cid=37F46C35E03B4B86&jid=CC77F3CEF526D9CF0B3021650FB4E57E&aid=2528C401A85F1BCC3AA58B0A4BC03E90&yid=F53A2717BDB04D52&vid=F3583C8E78166B9E&iid=CA4FD0336C81A37A&sid=8BD23BD67BF01A5C&eid=CB423C9A71560A74&journal_id=0254-7791&journal_name=计算数学&referenced_num=0&reference_num=0