%0 Journal Article %T C~n中的Schwarz导数 %A 余其煌 %J 科学通报 %D 1995 %I %X 单复变数的全纯函数f的Schwarz 导数,定义为S_f(z)=f(?)(z)/f′(z)=3/2(f″(z)/f′(z))~2,若f′(z)≠0.这是古典复分析中一个有用的题材,它与很多方面都有联系.它的重要性质有:1)若Ω(?)C为域,S_f(z)=0对所有z∈Ω都成立,当且仅当f为线性分式映照;2)若f与线性分式映照相复合,则Schwarz导数不变.近年来,将单变数的全纯映照的Schwarz导数推广到高维空间,有很多进展.例如:Osgood与Stowe以及Carne推广Schwarz导数到两个Riemann流形之间的共形映照上去.高为齐推广Flanders的结果到高维空间.Flanders曾指出:单变数的全纯函数的Schwarz导数可视为复射影空间CP~1中的曲线的一种曲率.FitzGerald与龚昇从交比出发,在一些典型域上定义了全纯映照的Schwarz导数,并讨论了相应的性质.在此文中,我们试图用另一种途径来定义Schwarz导数.当定义域为星形域时,可以推广上述的性质1).还可以推广上述的性质2),但此时不要求定义域是星形的. %K Schwarz导数 %K 全纯函数 %K 单复变数 %K 全纯映照 %U http://www.alljournals.cn/get_abstract_url.aspx?pcid=01BA20E8BA813E1908F3698710BBFEFEE816345F465FEBA5&cid=7C7E63796F062382A606A3A9833B8C05&jid=B40D4BA57FF46E45205A09B4DC283152&aid=1921326491A00139737C88B277BC2AB0&yid=BBCD5003575B2B5F&vid=1371F55DA51B6E64&iid=708DD6B15D2464E8&sid=7EEA6F8DDD9FAD6E&eid=7EEA6F8DDD9FAD6E&journal_id=0023-074X&journal_name=科学通报&referenced_num=0&reference_num=1