%0 Journal Article %T Diophantus方程x2+2m=yn %A 乐茂华 %A 郭永东 %J 科学通报 %D 1997 %I %X 设Z,N,Q分别是全体整数,正整数以及有理数的集合.数论和组合论中的很多问题都与指数型Diophantus方程x~2 2~m=y~n,x,y,m,n∈N,2(?)y,n>2的解(x,y,m,n)有关.近五十年来,Ljunggren,Nagell,Brown,Toyoizumi和Cohn等人都曾对此有过很多工作.1986年,文献1]宣布已经找出了方程(1)的全部解,但是迄今没有见到该结果的证明.因此方程(1)的求解仍是个尚未解决的问题本文运用Baker方法证明了:定理 方程(1)没有适合2|m以及m>2的解(x,y m,n).由于文献2]运用代数数论方法证明了:方程(1)仅有解(x,y,m,n)=(5,3,1,3)和(7,3,5,4)适合2(?)m;文献3]用初等数论方法证明了:方程(1)仅有解(x,y,m,n)=(11,5,2,3)适合m=2.因此综合上述结果即可确定方程(1)的全部解.推论 方程(1)仅有解(x,y,m,n)=(5,3,1,3),(7,3,5,4)和(11,5,2,3). %K 指数型 %K 正整数解 %K Baker方法 %K 丢番图方程 %U http://www.alljournals.cn/get_abstract_url.aspx?pcid=01BA20E8BA813E1908F3698710BBFEFEE816345F465FEBA5&cid=7C7E63796F062382A606A3A9833B8C05&jid=B40D4BA57FF46E45205A09B4DC283152&aid=049DE083F8258A118CEE6331E8CF78C2&yid=5370399DC954B911&vid=ECE8E54D6034F642&iid=59906B3B2830C2C5&sid=EB4DE9DC132993F4&eid=FD947B5A26542F64&journal_id=0023-074X&journal_name=科学通报&referenced_num=0&reference_num=3