%0 Journal Article %T 关于广义Ramanujan-Nagell方程(Ⅱ) %A 乐茂华 %J 科学通报 %D 1985 %I %X 设D是非平方整数,p是奇素数,p D对于给定的D和p,以N(D,p)表示方程x~2—D=p~n,x>8,n>0 (1)的整数解x、n的个数。对此,Apéry (C. R. Acad.Sci. Paris, 251(1960), 1451—1452)证明了:当D<0,D≡1(mod4)且D无平方因子时,N(D,p)≤2。Bender和Herzberg(Studies in Algerbra and %U http://www.alljournals.cn/get_abstract_url.aspx?pcid=01BA20E8BA813E1908F3698710BBFEFEE816345F465FEBA5&cid=7C7E63796F062382A606A3A9833B8C05&jid=B40D4BA57FF46E45205A09B4DC283152&aid=821B293C21187C52F9AE3FE5B915BB24&yid=74E41645C164CD61&vid=340AC2BF8E7AB4FD&iid=94C357A881DFC066&sid=7D6CD8918B045FD4&eid=7D6CD8918B045FD4&journal_id=0023-074X&journal_name=科学通报&referenced_num=1&reference_num=0