%0 Journal Article %T 关于伪球面上子流形的高斯映照 %A 沈一兵 %J 科学通报 %D 1982 %I %X 设M是一个n维黎曼流形,最近,陈成平证得:等距浸入f:却的高斯映照g:是调和的,当且仅当f是极小浸入,这里S~(n p)是(n p)维球面,G_(n 1,p)是Grassmann流形。彭家贵未加证明地指出,对于伪球面上子流形的高斯映照,类似的命题也成立。本文证实了这个猜测。设H~(n p)是(n p)维伪球面,Q表示H~(n p)中一切n维全测地子空间的集合,设f:是一 %U http://www.alljournals.cn/get_abstract_url.aspx?pcid=01BA20E8BA813E1908F3698710BBFEFEE816345F465FEBA5&cid=7C7E63796F062382A606A3A9833B8C05&jid=B40D4BA57FF46E45205A09B4DC283152&aid=5A04C32294665E609D5961AA6B35643C&yid=3F3D540C9B7906DE&vid=DB817633AA4F79B9&iid=DF92D298D3FF1E6E&sid=C66DE7562B0326E2&eid=C66DE7562B0326E2&journal_id=0023-074X&journal_name=科学通报&referenced_num=0&reference_num=0