%0 Journal Article
%T Chaos in the sense of Li-Yorke and the order of the inverse limit space
%A Jie Lü
%A Xiangdong Ye
%A
%J 科学通报(英文版)
%D 1999
%I
%X LetI= 0, 1] and ω0 be the first limit ordinal number. Assume thatf: 1→- 1 is continuous, piece-wise monotone and the set of periods off is |2′: iε |0|U|. It is known that the order of (1, 1) is ω0 or w0 + 1. It is shown that the order of the inverse limit space (1, f) is ω0 (resp. ω0 + 1) if and only iff is not (resp. is) chaotic in the sense of Li-Yorke.
%K inverse limit space
%K order of hereditarily decomposable chainable continua
%K chaos in the sense of Li-Yorke
%K regularrecurrent point
%U http://www.alljournals.cn/get_abstract_url.aspx?pcid=01BA20E8BA813E1908F3698710BBFEFEE816345F465FEBA5&cid=96E6E851B5104576C2DD9FC1FBCB69EF&jid=DD6615BC9D2CFCE0B6F945E8D5314523&aid=652EAC3E059DBAF98B5B1D2AF7A1ED81&yid=B914830F5B1D1078&vid=1AE5323881A5ECDC&iid=708DD6B15D2464E8&sid=BB44F42BE8AE7430&eid=BB44F42BE8AE7430&journal_id=1001-6538&journal_name=科学通报(英文版)&referenced_num=0&reference_num=7