%0 Journal Article
%T Data-driven model-free adaptive iterative learning control for a class of discrete-time nonlinear systems
离散时间非线性系统的数据驱动无模型自适应迭代学习控制
%A JIN Shang-tai
%A HOU Zhong-sheng
%A CHI Rong-hu
%A LIU Xiang-bin
%A
金尚泰
%A 侯忠生
%A 池荣虎
%A 柳向斌
%J 控制理论与应用
%D 2012
%I
%X In this paper, a data-driven model-free adaptive iterative learning control (MFAILC) scheme is proposed based on a novel dynamic linearization approach along the iteration axis for a class of repetitive discrete-time single input single output (SISO) nonlinear systems. The MFAILC is essentially a data-driven control method that designs controller merely using the measured input and output data of the controlled plant. Theoretical analysis shows that the MFAILC guarantees the monotonic convergence of the iteration maximum error. Numerical example and freeway traffic control application are given to illustrate the effectiveness of the MFAILC.
%K data-driven control
%K iterative learning control
%K model-free adaptive control
%K dynamic linearization approach
%K monotonic convergence
%K freeway traffic control
数据驱动控制
%K 迭代学习控制
%K 无模型自适应控制
%K 动态线性化方法
%K 单调收敛性
%K 快速路交通控制
%U http://www.alljournals.cn/get_abstract_url.aspx?pcid=5B3AB970F71A803DEACDC0559115BFCF0A068CD97DD29835&cid=8240383F08CE46C8B05036380D75B607&jid=970898A57DFC021F93AB51667BAED7F7&aid=EDF3957F6BB66EE8DF85069896C50845&yid=99E9153A83D4CB11&vid=771469D9D58C34FF&iid=5D311CA918CA9A03&sid=FC20C40D27903A85&eid=9F481C73BF82C48F&journal_id=1000-8152&journal_name=控制理论与应用&referenced_num=0&reference_num=0