%0 Journal Article %T Implicit Kalman filter for position estimation with visual and inertial sensor fusion
视觉与惯性传感器融合的隐式卡尔曼滤波位置估计算法 %A DU Guang-xun %A QUAN Quan %A CAI Kai-yuan %A
杜光勋 %A 全权 %A 蔡开元 %J 控制理论与应用 %D 2012 %I %X In mobile robotics, position-sensing is crucial to a robot. We investigate a type of online position estimations based on visual and inertial sensor fusion. Being different from the traditional state estimation, our position estimation is a linear state estimation with implicit observation equations. To this end, an implicit Kalman filter is proposed and designed in details for this position estimation. Furthermore, a state augmentation method is employed in which the accelerometer bias is taken as a state of the filter to compensate for its effect to the position estimation results. Simulation results show that the implicit Kalman filter is convergent, and the effect of the accelerometer bias is eliminated from the position estimation. %K vision %K inertia %K sensor fusion %K position estimation %K implicit Kalman filter
视觉 %K 惯性 %K 传感器融合 %K 位置估计 %K 隐式卡尔曼滤波器 %U http://www.alljournals.cn/get_abstract_url.aspx?pcid=5B3AB970F71A803DEACDC0559115BFCF0A068CD97DD29835&cid=8240383F08CE46C8B05036380D75B607&jid=970898A57DFC021F93AB51667BAED7F7&aid=8A6EC9640C158E7BD72F48559FCC2D57&yid=99E9153A83D4CB11&vid=771469D9D58C34FF&iid=DF92D298D3FF1E6E&sid=07034C6B9EA4A53C&eid=F7B726EE3ACCF328&journal_id=1000-8152&journal_name=控制理论与应用&referenced_num=0&reference_num=0