%0 Journal Article %T Fuzzy robustness analysis based on importance sampling and neural network
基于重要抽样法和神经网络的模糊鲁棒性分析 %A WU Huai-ning %A LI Yong %A CAI Kai-yuan %A
吴淮宁 %A 李 勇 %A 蔡开元 %J 控制理论与应用 %D 2005 %I %X This paper applies the importance sampling (IS) method and neural network (NN) to the fuzzy robustness analysis of uncertain control systems.The IS method is utilized to improve the sampling efficiency when the probability of fuzzy unacceptable performance is very small.The NN is used to predict the performance index requiring more computational time in each simulation experiment.The proposed approach can reduce the excessive computational cost generated from the standard Monte Carlo simulation (MCS) for dealing with the rare event case and the performance index requiring more computational time in the fuzzy robustness analysis.Finally,a numerical example is provided to demonstrate the effectiveness of the proposed method. %K uncertain control systems %K robustness analysis %K fuzzy approach %K neural network(NN) %K importance sampling %K Monte Carlo simulation
不确定控制系统 %K 鲁棒性分析 %K 模糊方法 %K 神经网络 %K 重要抽样 %K MonteCarlo仿真 %U http://www.alljournals.cn/get_abstract_url.aspx?pcid=5B3AB970F71A803DEACDC0559115BFCF0A068CD97DD29835&cid=8240383F08CE46C8B05036380D75B607&jid=970898A57DFC021F93AB51667BAED7F7&aid=73189CB84EA1717B&yid=2DD7160C83D0ACED&vid=BC12EA701C895178&iid=0B39A22176CE99FB&sid=B66C5792F4740920&eid=9D9F10A828991FA6&journal_id=1000-8152&journal_name=控制理论与应用&referenced_num=1&reference_num=16