%0 Journal Article %T Robust Kalman filter design for unknown noise covariance
噪声统计特性未知时的鲁棒卡尔曼滤波算法设计 %A WANG Jian-wen %A SHUI Hai-tao %A LI Xun %A ZHANG Hui %A MA Hong-xu %A
王建文 %A 税海涛 %A 李迅 %A 张辉 %A 马宏绪 %J 控制理论与应用 %D 2011 %I %X This paper is concerned with the problem of a robust Kalman filter(RKF) design when noise covariance is unknown in stochastic linear systems. A novel design criterion for RKFs is proposed, and its rationality is analyzed. Based on the criterion, the design of a RKF is transformed to solving a linear matrix inequality(LMI). The results are validated by simulations. %K stochastic linear system %K robust Kalman filter %K design criterion %K linear matrix inequality
随机线性系统 %K 鲁棒卡尔曼滤波算法 %K 设计条件 %K 线性矩阵不等式 %U http://www.alljournals.cn/get_abstract_url.aspx?pcid=5B3AB970F71A803DEACDC0559115BFCF0A068CD97DD29835&cid=8240383F08CE46C8B05036380D75B607&jid=970898A57DFC021F93AB51667BAED7F7&aid=C52548B92BC6C5BBB37EB1A9A3662B7E&yid=9377ED8094509821&vid=D3E34374A0D77D7F&iid=94C357A881DFC066&sid=99A964928ADB4E67&eid=780091CB32840698&journal_id=1000-8152&journal_name=控制理论与应用&referenced_num=0&reference_num=14