%0 Journal Article
%T Large call-centers''arrival-rates prediction models based on the least squares support vector machine
大型呼叫中心人工呼入量的最小二乘支持向量机模型
%A LI Da-chuan
%A XIN Zhan-hong
%A
李大川
%A 忻展红
%J 控制理论与应用
%D 2009
%I
%X In analyzing the data from a large call center, we find that arrival rates can be split into the daily-arrival-rate and the time-period-arrival-rate. Based on the least squares support vector machine theory(LS-SVM), predicting models of the daily-arrival-rate and the time-period-arrival-rate are established. Simulation experiments show that these models are good at regression and forecasting. Compared with Back-Propagation(BP) neural network prediction models, these models give better prediction results.
%K call center
%K forecasting
%K least squares support vector machine theory(LS-SVM)
呼叫中心
%K 预测
%K 最小二乘支持向量机
%U http://www.alljournals.cn/get_abstract_url.aspx?pcid=5B3AB970F71A803DEACDC0559115BFCF0A068CD97DD29835&cid=8240383F08CE46C8B05036380D75B607&jid=970898A57DFC021F93AB51667BAED7F7&aid=981E64C83667600AD1BD68134A7CE891&yid=DE12191FBD62783C&vid=96C778EE049EE47D&iid=DF92D298D3FF1E6E&sid=07C52AC66061533A&eid=F2947E14627CD734&journal_id=1000-8152&journal_name=控制理论与应用&referenced_num=0&reference_num=6