%0 Journal Article
%T Particle-swarm optimization algorithm for model predictive control with constraints
基于粒子群优化的有约束模型预测控制器
%A DONG N
%A CHEN Zeng-qiang
%A SUN Qing-lin
%A YUAN Zhu-zhi
%A
董娜
%A 陈增强
%A 孙青林
%A 袁著祉
%J 控制理论与应用
%D 2009
%I
%X We investigate the optimization algorithms for solving the constrained optimization problems in model predictive control(MPC). To deal with the disadvantage of the quadratic programming(QP) algorithm, we introduce and apply the chaotic particle-swarm optimization(CPSO) algorithm to solve the control problem with simultaneous constraints on inputs and states. A practical constrained optimization problem of the discrete-time linear system is solved by QP and PSO, respectively. By comparing the simulation results, we show the advantages of the PSO-based MPC algorithm.
%K model predictive control
%K particle swarm optimization
%K optimization with constraints
%K discrete-time linear systems
模型预测控制
%K 粒子群优化算法
%K 带约束的优化
%K 线性离散系统
%U http://www.alljournals.cn/get_abstract_url.aspx?pcid=5B3AB970F71A803DEACDC0559115BFCF0A068CD97DD29835&cid=8240383F08CE46C8B05036380D75B607&jid=970898A57DFC021F93AB51667BAED7F7&aid=EBF4C36426A252300785E65EDFA15F25&yid=DE12191FBD62783C&vid=96C778EE049EE47D&iid=9CF7A0430CBB2DFD&sid=78AF84DBB4041008&eid=CF2C3194F1B66D28&journal_id=1000-8152&journal_name=控制理论与应用&referenced_num=0&reference_num=8