%0 Journal Article %T Temperature modeling and control of DMFC based on FGA-ANFIS technology
基于一种FGA–ANFIS技术的DMFC温度建模和控制 %A QI Zhi-dong %A ZHU Xin-jian %A
戚志东 %A 朱新坚 %J 控制理论与应用 %D 2008 %I %X To improve the performance of a direct methanol fuel cell(DMFC),the adaptive neural fuzzy inference (FGA-ANFIS)technology is applied to the modeling and control of a DMFC temperature system.First,an adaptive neural fuzzy inference system(ANFIS)identification model of DMFC stack temperature is developed based on the input-output sampled data,getting around the internal complexity of DMFC stack.Then,taking the well-trained network model as the reference model of the control system of DMFC stack,we use a novel fuzzy genetic algorithm(FGA)for adaptively adjusting the parameters and fuzzy rules of a neural fuzzy controller.Simulation results demonstrate better performance of his neural fuzzy controller in comparison with those of the nonlinear PID and traditional fuzzy algorithm. %K direct methanol fuel cell %K adaptive neural fuzzy inference system %K fuzzy genetic algorithms
直接甲醇燃料电池 %K 自适应神经模糊推理系统 %K 模糊遗传算法 %U http://www.alljournals.cn/get_abstract_url.aspx?pcid=5B3AB970F71A803DEACDC0559115BFCF0A068CD97DD29835&cid=8240383F08CE46C8B05036380D75B607&jid=970898A57DFC021F93AB51667BAED7F7&aid=3FBA13C4B4874A890F2CA49248768DAF&yid=67289AFF6305E306&vid=C5154311167311FE&iid=E158A972A605785F&sid=0B52E912EAFE3700&eid=81D76BB45305F8B7&journal_id=1000-8152&journal_name=控制理论与应用&referenced_num=0&reference_num=8