%0 Journal Article %T Support vector machine based direct inverse-model identification
基于支持向量机的直接逆模型辨识 %A ZHONG Wei-min %A PI Dao-ying %A SUN You-xian %A
钟伟民 %A 皮道映 %A 孙优贤 %J 控制理论与应用 %D 2005 %I %X After a simple discussion of the principle of the inverse_model identification,a support vector machines(SVM) based direct inverse-model identification method is developed by using SVM's excellent ability of function approximation.According to the train data,linear and nonlinear systems' black-box identification is performed by using SVM with quadric polynomial and Gaussian RBF kernel respectively.Simulation results show that the performance of SVM based direct inverse-model is better than that of BP neural network in that it has better identification precision,quicker identification speed and stronger generalization ability. %K inverse-model %K support vector machine(SVM) %K BP neural network %K modeling and identification
逆模型 %K 支持向量机(SVM) %K BP神经网络 %K 建模与辨识 %U http://www.alljournals.cn/get_abstract_url.aspx?pcid=5B3AB970F71A803DEACDC0559115BFCF0A068CD97DD29835&cid=8240383F08CE46C8B05036380D75B607&jid=970898A57DFC021F93AB51667BAED7F7&aid=B02F216E767D1971&yid=2DD7160C83D0ACED&vid=BC12EA701C895178&iid=0B39A22176CE99FB&sid=F416A9924F23B020&eid=85002451B65CE0D1&journal_id=1000-8152&journal_name=控制理论与应用&referenced_num=5&reference_num=7