%0 Journal Article %T The analytical general solutions to the higher-order Sylvester matrices equation
高阶Sylvester矩阵方程的解析通解 %A YU Hai-hua %A DUAN Guang-ren %A
于海华 %A 段广仁 %J 控制理论与应用 %D 2011 %I %X Three completely analytical parametric solutions to the matrices equation A_{m1}V J^{m1} +...+A_1V J +A_0V = B_{m2}WJ^{m2} +...+B_1WJ +B_0W are presented. These solutions are expressed in terms of parameter vectors, which provide the design degrees of freedom. These approaches do not require the eigenvalues of J to be distinct or to be different from the roots of A(s). Moreover, the obtained solutions contain only numerical matrix calculations, which provide convenience for the computation of these solutions in applications. A numerical example validates the proposed approaches. %K matrix equation %K analytical general solution %K eigenvalue %K Jordan canonical form
矩阵方程 %K 解析通解 %K 特征值 %K 若当标准型 %U http://www.alljournals.cn/get_abstract_url.aspx?pcid=5B3AB970F71A803DEACDC0559115BFCF0A068CD97DD29835&cid=8240383F08CE46C8B05036380D75B607&jid=970898A57DFC021F93AB51667BAED7F7&aid=EBF7289B0EEBDC9E778385A516532100&yid=9377ED8094509821&vid=D3E34374A0D77D7F&iid=94C357A881DFC066&sid=6CDD207A90CE1EEC&eid=6C3EA4F7B6E5F836&journal_id=1000-8152&journal_name=控制理论与应用&referenced_num=0&reference_num=19