%0 Journal Article %T Dynamic trajectory planning for unmanned aerial vehicle based on sparse A* search and improved artificial potential field
基于稀疏A*搜索和改进人工势场的无人机动态航迹规划 %A YAO Yuan %A ZHOU Xing-she %A ZHANG Kai-long %A DONG Dong %A
姚远 %A 周兴社 %A 张凯龙 %A 董冬 %J 控制理论与应用 %D 2010 %I %X Based on the sparse A* search algorithm for path planning and the improved artificial potential field, we propose a method of dynamic trajectory planning for unmanned aerial vehicle(UAV) in the threat model composed of obstacles with different attributes. This method first builds a grid model of the threat distribution; and then, it makes the global path planning by sparse A* search algorithm according to the static obstacles; Finally, combining the pre-determined route and the dynamic obstacles, UAV can accomplish the dynamic trajectory planning by using the improved artificial potential field. Simulation results indicate that the proposed method can find a global optimal path with the given risk index and achieve a good performance of dynamic obstacle avoidance. %K sparse A* search %K trajectory planning %K artificial potential field %K dynamic obstacle avoidance
稀疏A*搜索 %K 航迹规划 %K 人工势场 %K 动态避障 %U http://www.alljournals.cn/get_abstract_url.aspx?pcid=5B3AB970F71A803DEACDC0559115BFCF0A068CD97DD29835&cid=8240383F08CE46C8B05036380D75B607&jid=970898A57DFC021F93AB51667BAED7F7&aid=461C79B6929715E9FA6D8A4E23CB98D3&yid=140ECF96957D60B2&vid=DB817633AA4F79B9&iid=DF92D298D3FF1E6E&sid=85A6AA3FF013E1BF&eid=4986C0B14AED27B4&journal_id=1000-8152&journal_name=控制理论与应用&referenced_num=0&reference_num=0