%0 Journal Article %T Anti-predatory particle-swarm optimization with flexible inertial weight for unconstrained multilevel lot-sizing problems
多级生产批量规划问题的柔性惯量反捕食粒子群算法 %A HAN Yi %A CAI Jian-hu %A ZHOU Gen-gui %A LI Yan-lai %A TANG Jia-fu %A
韩毅 %A 蔡建湖 %A 周根贵 %A 李延来 %A 唐加福 %J 控制理论与应用 %D 2010 %I %X Multilevel lot-sizing(MLLS) is a crucial problem in decision-making for the master production scheduling(MPP) of the material requirement plan(MRP), which is with broad industrial applications and has been considered the NP-hard combinatory optimization problem. Anti-predatory particle-swarm optimization(APSO), which is closely related to particle-swarm optimization(PSO), is a recently emerged meta-heuristics. An anti-predatory particle-swarm optimization with flexible inertial weight(WAPSO) is proposed to solve the unconstrained MLLS problem in a given assembly structure. A set of 12 small-sized benchmark data and a randomly generated medium size data are adopted to test the proposed algorithm. The experimental results are compared with those of genetic algorithm(GA) and Wagner-Whitin(WW) dynamic programming algorithm, the results show that WAPSO algorithm is an effective and suitable tool for solving the unconstrained MLLS problem in a given assembly structure. %K multilevel lot-sizing %K anti-predatory particle swarm optimization %K meta-heuristics %K inertial weight %K assembly structure
多级生产批量规划 %K 反捕食粒子群算法 %K 亚启发式算法 %K 惯性权重 %K 装配结构 %U http://www.alljournals.cn/get_abstract_url.aspx?pcid=5B3AB970F71A803DEACDC0559115BFCF0A068CD97DD29835&cid=8240383F08CE46C8B05036380D75B607&jid=970898A57DFC021F93AB51667BAED7F7&aid=CCC58646964C2D7CAFB7661B5B06F1EE&yid=140ECF96957D60B2&vid=DB817633AA4F79B9&iid=F3090AE9B60B7ED1&sid=A903BA7BF48F47AE&eid=10F17081942653E7&journal_id=1000-8152&journal_name=控制理论与应用&referenced_num=0&reference_num=0