%0 Journal Article
%T Research on remote sensing image classification based on Kohonen neural network
基于Kohonen神经网络的遥感影像监督分类
%A 罗小波
%A 邓磊
%A 杨富平
%J 重庆邮电大学学报(自然科学版)
%D 2011
%I
%X Kohonen algorithm has defects that initial weights are randomized, learning rate and neighborhood are difficult to determine, and as a clustering algorithm, kohonen algorithm is difficult to be used directly for supervised classification. In this paper, we used max-min distance method to determine Kohonen Network' initial weights, introduced weight error as the convergence condition of network, and improved Kohonen network' unsupervised-learning algorithm. We then used the improved Kohonen' learning algorithm combined with penalty formula to carry out supervised classification of remote sensing data. Experiments showed that higher accuracy resulted from this improved algorithm.
%K Kohonen neural network
%K max-min distance means
%K penalty learning
%K supervised classification
Kohonen神经网络
%K 最大最小距离法
%K 奖惩学习
%K 监督分类
%U http://www.alljournals.cn/get_abstract_url.aspx?pcid=01BA20E8BA813E1908F3698710BBFEFEE816345F465FEBA5&cid=96E6E851B5104576C2DD9FC1FBCB69EF&jid=5C2694A2E5629ECD6B59D7B28C6937AD&aid=8A9892E12714AC7F201F81A0B8D1D771&yid=9377ED8094509821&vid=EA389574707BDED3&iid=94C357A881DFC066&sid=984BD2F4D19B9D1C&eid=E6A0A363CA4FC5CF&journal_id=1673-825X&journal_name=重庆邮电大学学报(自然科学版)&referenced_num=0&reference_num=0