%0 Journal Article
%T Advances in Automatic Image Annotation
自动图像标注技术研究进展
%A BAO Hong
%A XU Guang-mei
%A FEND Song-he
%A XU De
%A
鲍 泓
%A 徐光美
%A 冯松鹤
%A 须 德
%J 计算机科学
%D 2011
%I
%X 近年来,自动图像标注(Automatic Image Annotation,AIA)技术已经成为图像语义理解研究领域的热点。其基本思想是利用已标注图像集或其他可获得的信息自动学习语义概念空间与视觉特征空间的潜在关联或者映射关系,来预测未知图像的标注。随着机器学习理论的不断发展,包括相关模型、分类器模型等不同的学习模型已经被广泛地应用于自动图像标注研究领域。现有的自动图像标注算法可以大致分为基于分类的标注算法、基于概率关联模型的标注算法以及基于图学习的标注算法等三大类。首先根据自动图像标注算法的特征提取及表示机制不同,将现有算法划分为基于全局特征和基于区域划分的自动图像标注方法。其次,在基于区域划分的自动图像标注算法中,按照学习算法的不同,将其划分为基于分类的标注方法、基于概率关联模型的标注方法以及基于图学习的标注方法,并分别介绍各类别中具有代表性的标注算法及其优缺点。然后给出了自动图像标注最新的研究进展,最后探讨自动图像标注的进一步研究方向。
%K Automatic image annotation
%K Multi-instance learning
%K Multi-label learning
%K Graph learning
%K Probabilistic modeling
自动图像标注,多示例学习,多标记学习,图学习,概率建模
%U http://www.alljournals.cn/get_abstract_url.aspx?pcid=5B3AB970F71A803DEACDC0559115BFCF0A068CD97DD29835&cid=8240383F08CE46C8B05036380D75B607&jid=64A12D73428C8B8DBFB978D04DFEB3C1&aid=3FDBEA69C21D71CDAA0A5FC2648CF37B&yid=9377ED8094509821&vid=16D8618C6164A3ED&iid=DF92D298D3FF1E6E&sid=6209D9E8050195F5&eid=1371F55DA51B6E64&journal_id=1002-137X&journal_name=计算机科学&referenced_num=0&reference_num=38