%0 Journal Article
%T Distance-based Adaptive Fuzzy Particle Swarm Optimization
一种基于距离的自适应模糊粒子群优化算法
%A LI Shuo-feng
%A LI Tai-yong
%A
李朔枫
%A 李太勇
%J 计算机科学
%D 2011
%I
%X The classical Particle Swarm Optimization (PSO) neglects the difference among particles while updating a particle's velocity in a generation. I}o cope with this issue, a novel Distanccbased Adaptive Fuzzy Particle Swarm Optimization (DAFPSO) was proposed in this paper. The DAFPSO designed membership functions to tune the basic parameters used in updating a particle's velocity according to the distance between the current particle and the global best particle. Several classical benchmark functions were used to evaluate the (DAFPSO.The experiments demonstrate the efficiency and effectiveness of the proposed DAFPSO.
%K PSO
%K Distance measurement
%K Inertia weight
%K Fuzzy set
%K Membership function
粒子群,距离度量,惯性权值,模糊集,隶属函数
%U http://www.alljournals.cn/get_abstract_url.aspx?pcid=5B3AB970F71A803DEACDC0559115BFCF0A068CD97DD29835&cid=8240383F08CE46C8B05036380D75B607&jid=64A12D73428C8B8DBFB978D04DFEB3C1&aid=2AC66EB828B1E435C2F1535C4B83565A&yid=9377ED8094509821&vid=16D8618C6164A3ED&iid=5D311CA918CA9A03&sid=4290346F7268639E&eid=0F7768518993EDDE&journal_id=1002-137X&journal_name=计算机科学&referenced_num=0&reference_num=0