%0 Journal Article
%T Maximum Relative Separation Ratio Single Spherical Classifier with an Adaptive Upper Bound
自适应上界的相对最大分离比单球面分类器
%A ZHANG Wei
%A LIU Xian-hui
%A
张伟
%A 柳先辉
%J 计算机科学
%D 2012
%I
%X Without taking the spread of negative class samples into account, the objective of single spherical classifier (RSS) is only to maximize the separation ratio. According to the Fisher discriminant analysis, this paper introduced relafive margin into RSS to enhance the cohesion of negative class samples and improve the discriminant accuracy by the upper bound constraint in the feature space. Because the upper bound is unpredictable, a maximum relative separation ratio single spherical classifier with an adaptive upper bound (ARRSS) was built to avoid no solution and its parameters were researched afterwards. Experiments show the proposed method achieves better generalization performance compared with RSS.
%K RSS
%K Fisher discriminant analysis
%K Relative margin
%K Upper bound constraint
%K Adaptive upper bound
单球面分类器
%K Fisher判别
%K 相对间隔
%K 上界约束
%K 自适应上界
%U http://www.alljournals.cn/get_abstract_url.aspx?pcid=5B3AB970F71A803DEACDC0559115BFCF0A068CD97DD29835&cid=8240383F08CE46C8B05036380D75B607&jid=64A12D73428C8B8DBFB978D04DFEB3C1&aid=75AFC294F2AFDCB15AD9531F86026E19&yid=99E9153A83D4CB11&vid=7C3A4C1EE6A45749&iid=9CF7A0430CBB2DFD&sid=847B14427F4BF76A&eid=AC1578C6BB9EBDEF&journal_id=1002-137X&journal_name=计算机科学&referenced_num=0&reference_num=0