%0 Journal Article %T Reconstruction of Superresolution Image Using Generalized Gaussian Markov Random Fields Model
基于通用高斯马尔可夫随机场模型的图像超分辨率重建 %A HUANG Hua %A LI Jun %A QI Chun %A ZHU Shi-Hua %A
黄华 %A 李俊 %A 齐春 %A 朱世华 %J 计算机科学 %D 2005 %I %X An image super-resolution reconstruction method based on generalized Gauss-Markov random fields (GGM- RF)model is presented in this paper. The process of searching solution and experimental results are presented and ana- lyzed. Compared with Compound Markov and Huber-Markov random models, GGMRF model has the merits of easier solving and reduced computational expense, because it does not need to discriminate edge or line process. The experi- mental results show that for the case of lightly noised image, this method has a better visual effect on the reconstructed image. %K Superresolution %K Image reconstruction %K GGMRF
超分辨率 %K 图像重建 %K GGMRF模型 %K 马尔可夫随机场 %K 随机场模型 %K 图像超分辨率 %K 高斯 %K 通用 %K Markov %K MRF模型 %U http://www.alljournals.cn/get_abstract_url.aspx?pcid=5B3AB970F71A803DEACDC0559115BFCF0A068CD97DD29835&cid=8240383F08CE46C8B05036380D75B607&jid=64A12D73428C8B8DBFB978D04DFEB3C1&aid=05C2BEB411C21A8C&yid=2DD7160C83D0ACED&vid=9971A5E270697F23&iid=708DD6B15D2464E8&sid=64963996248CBF47&eid=2BA123C6EB9D54C2&journal_id=1002-137X&journal_name=计算机科学&referenced_num=0&reference_num=11