%0 Journal Article %T R-means: Exploiting Association Rules as Means for Text Clustering
R-means:以关联规则为簇中心的文本聚类 %A LONG Hao %A FENG Jian-Lin %A LI Qu %A
龙昊 %A 冯剑琳 %A 李曲 %J 计算机科学 %D 2005 %I %X This paper proposes a new text clustering algorithm called R-means which integrates k-means with associa- tion rule (or frequent itemset). R-means exploits association rules as means of clusters and refines clusters by an itera- tive procedure which is similar to that of k-means. R-means not only inherits the simplicity of k-means, but also gener- ates more comprehensive cluster labels which are described by association rules. The experiments with several real data sets have demonstrated that R-means can achieve quite well precision and high performance. %K Association rules %K Frequent itemset %K Means of clusters %K Associative text clustering
关联规则 %K 频繁项目集 %K 簇中心 %K 关联文本聚类 %K R-means算法 %K 信息检索 %U http://www.alljournals.cn/get_abstract_url.aspx?pcid=5B3AB970F71A803DEACDC0559115BFCF0A068CD97DD29835&cid=8240383F08CE46C8B05036380D75B607&jid=64A12D73428C8B8DBFB978D04DFEB3C1&aid=86A94AC3CFC9A44A&yid=2DD7160C83D0ACED&vid=9971A5E270697F23&iid=9CF7A0430CBB2DFD&sid=3F0AF5EDBC960DB0&eid=BA79719BCA7341D5&journal_id=1002-137X&journal_name=计算机科学&referenced_num=0&reference_num=13