%0 Journal Article %T Mining Project Frequent Patterns without Candidate Generation
不产生候选的快速投影频繁模式树挖掘算法 %A 何炎祥 %A 向剑文 %A 朱骁峰 %A 孔维强 %J 计算机科学 %D 2002 %I %X Frequent Pattern mining plays an essential role in data mining. Most of the previous studies adopt an Apriori-like candidate set generation-and-test approach. However, candidate set generation is still costly, especially when there exist prolific patterns and/or long patterns.In this study, we introduce a novel frequent pattern growth (FP-growth)method, which is efficient and scalable for mining both long and short frequent patterns without candidate generation. And build a new project frequent pattern growth (PFP-tree)algorithm on this study, which not only heirs all the advantages in the FP-growth method, but also avoids it's bottleneck in database size dependence. So increase algorithm's scalability efficiently. %K Data mining %K Frequent patterns-tree %K Frequent patterns-growth %K Project frequent pattern-tree
事务数据库 %K 快速投影频繁模式树挖掘算法 %K 数据挖掘 %K 频繁项集 %U http://www.alljournals.cn/get_abstract_url.aspx?pcid=5B3AB970F71A803DEACDC0559115BFCF0A068CD97DD29835&cid=8240383F08CE46C8B05036380D75B607&jid=64A12D73428C8B8DBFB978D04DFEB3C1&aid=216F338977C88E3B&yid=C3ACC247184A22C1&vid=771469D9D58C34FF&iid=708DD6B15D2464E8&sid=4F2F18DD6F870C2C&eid=80A07035DF96B0C4&journal_id=1002-137X&journal_name=计算机科学&referenced_num=7&reference_num=14