%0 Journal Article %T A novel background Gaussian mixture model
新型背景混合高斯模型 %A Bai Xiangfeng %A Li Aihu %A Li Xilai %A Li Renbing %A
白向峰 %A 李艾华 %A 李喜来 %A 李仁兵 %J 中国图象图形学报 %D 2011 %I %X A deficit of classic Gaussian mixture model in background subtraction is the high computation cost. To solve this problem, a novel algorithm is proposed in this paper. A threshold parameter corresponding to the mean of deviation is utilized to judge whether a model matches the current pixel intensity. The new algorithm efficiently reduces the calculation burden of the operation of square and exponent with classical model; meanwhile, a non-linear weight updating approach is adopted, with the notion of sustain stationary time introduced in, and hence the quick converting of a relative long still object in scene into the background is achievable. Experimental results show that the new algorithm has significantly improved the calculation efficiency of background model. %K object detection %K background model %K Gaussian mixture model %K weight updating
目标检测 %K 背景模型 %K 混合高斯模型 %K 权值更新 %U http://www.alljournals.cn/get_abstract_url.aspx?pcid=5B3AB970F71A803DEACDC0559115BFCF0A068CD97DD29835&cid=8240383F08CE46C8B05036380D75B607&jid=D06194629680C940ACE75262F54B9D85&aid=EBF7289B0EEBDC9E1023A92163973104&yid=9377ED8094509821&vid=7801E6FC5AE9020C&iid=B31275AF3241DB2D&sid=88B4027FEBE4F5FF&eid=BB44F42BE8AE7430&journal_id=1006-8961&journal_name=中国图象图形学报&referenced_num=1&reference_num=0