%0 Journal Article %T Robust foreground detection with adaptive threshold estimation
复杂背景下的自适应前景分割算法 %A Jiang Peng %A qin xiao lin %A
蒋鹏 %A 秦小麟 %J 中国图象图形学报 %D 2011 %I %X A robust background subtraction technique is proposed based on adaptive clustering of temporal color/intensity. An un-supervised clustering method is proposed to model a background with a group of weighted clusters. The clusters and their weights can be updated with a background change. In addition, the unimodal or multimodal distributions of background are detected adaptively. We also present a novel statistical threshold estimation scheme to determine the thresholds using in our method. Experimental results on different types of videos demonstrate the utility and performance of the proposed approach. %K background subtraction %K kernel density estimation %K statistical threshold estimation
背景差 %K 核密度 %K 阈值估计 %U http://www.alljournals.cn/get_abstract_url.aspx?pcid=5B3AB970F71A803DEACDC0559115BFCF0A068CD97DD29835&cid=8240383F08CE46C8B05036380D75B607&jid=D06194629680C940ACE75262F54B9D85&aid=E83D32C4C0EF63D1B0D04DBF7C8555E0&yid=9377ED8094509821&vid=7801E6FC5AE9020C&iid=CA4FD0336C81A37A&sid=42425781F0B1C26E&eid=BE33CC7147FEFCA4&journal_id=1006-8961&journal_name=中国图象图形学报&referenced_num=0&reference_num=20