%0 Journal Article
%T An Effective Method of Optimal Reconstruction of Order Parameters
一种有效的最优序参量重构方法
%A WANG Hai
%A long
%A QI Fei
%A hu
%A
王海龙
%A 戚飞虎
%J 中国图象图形学报
%D 2001
%I
%X A novel method of reconstruction of order parameters in synergetic neural network is presented in this paper, Considering the neural network has the self learning ability, so we construct this linear transformantion using this ability. Additionally, considering the genetic algorithm has the globally optimal searching ability, so we can achieve these reconstruction parameters using genetic algorithm. The new method trained the synergetic neural network using genetic algorithm on the training samples set, after the convergence of genetic algorithm, the reconstruction parameters can be got. In the theory, genetic algorithm can achieve the globally optimal reconstruction parameters after infinite computation, which can be guaranteed by itself theory. So this method completely solves the construction of reconstruction parameters on the theory. The test on the samples from real applications shows:new method really can find a group of reconstruction parameters which improves the performance of synergetic neural network greatly.
%K Order parameters
%K Reconstruction of order parameters
%K Synergetic neural networks
%K Synergetic computer
%K Genetic algorithm
序参量
%K 序参量重构
%K 协同神经网络
%K 遗传算法
%K 模式识别
%U http://www.alljournals.cn/get_abstract_url.aspx?pcid=5B3AB970F71A803DEACDC0559115BFCF0A068CD97DD29835&cid=8240383F08CE46C8B05036380D75B607&jid=D06194629680C940ACE75262F54B9D85&aid=1531533DBC40911F&yid=14E7EF987E4155E6&vid=B31275AF3241DB2D&iid=CA4FD0336C81A37A&sid=014B591DF029732F&eid=BFE7933E5EEA150D&journal_id=1006-8961&journal_name=中国图象图形学报&referenced_num=0&reference_num=5