%0 Journal Article %T An Improved Density-based Spatial Clustering Algorithm with Sampling
一种改进的基于密度的抽样聚类算法 %A HU Cai-ping %A QIN Xiao-lin %A
胡彩平 %A 秦小麟 %J 中国图象图形学报 %D 2007 %I %X DBSCAN is one of the effective spatial clustering algorithms,which can discover clusters of any arbitrary shape and handle the noise effectively.However,it has also several disadvantages.First,it is based on only spatial attributes without considering non-spatial attributes in the databases.Second,when DBSCAN handles large-scale spatial databases,it requires large volume of memory support and I/O cost.In this paper,an improved density-based spatial clustering algorithm with sampling(IDBSCAS) is developed,which not only clusters large-scale spatial databases effectively,but also considers spatial attributes and non-spatial attributes.Experimental results of 2-D spatial datasets show that the new algorithm is feasible and efficient. %K spatial data mining %K spatial clustering %K density %K seeds %K non-spatial attributes
空间数据挖掘 %K 空间聚类 %K 密度 %K 种子 %K 非空间属性 %U http://www.alljournals.cn/get_abstract_url.aspx?pcid=5B3AB970F71A803DEACDC0559115BFCF0A068CD97DD29835&cid=8240383F08CE46C8B05036380D75B607&jid=D06194629680C940ACE75262F54B9D85&aid=DDEBDCBBD7663DA99B748ABEA3B72120&yid=A732AF04DDA03BB3&vid=59906B3B2830C2C5&iid=708DD6B15D2464E8&sid=DB7C57A2F6AB0CB0&eid=1AE9108C480054ED&journal_id=1006-8961&journal_name=中国图象图形学报&referenced_num=0&reference_num=10