%0 Journal Article %T Foreground detection based on unsupervised background clustering
利用背景聚类的快速前景分割算法 %A Jiang peng %A Qin Xiaolin %A
蒋鹏 %A 秦小麟 %J 中国图象图形学报 %D 2010 %I %X A statistical background subtraction technique is proposed based on clustering of temporal color/intensity. An un-supervised clustering method is proposed to model a background with serial of clusters. The unimodal or multimodal distributions of background are detected adaptively. We use a Gaussians model to simulate each cluster which prevents the estimation the parameter of mix of Gaussians model. The foreground will be detected by comparing the background possibility with a threshold. Experimental results show our approach has equal or better segmentation performance and is proved capable of real-time processing. %K unsupervised clustering %K Gaussians model %K adaptive
无监督聚类 %K 高斯模型 %K 自适应 %U http://www.alljournals.cn/get_abstract_url.aspx?pcid=5B3AB970F71A803DEACDC0559115BFCF0A068CD97DD29835&cid=8240383F08CE46C8B05036380D75B607&jid=D06194629680C940ACE75262F54B9D85&aid=25EE3F9316E667C3ED4BE6B28260E1FE&yid=140ECF96957D60B2&vid=23CCDDCD68FFCC2F&iid=59906B3B2830C2C5&sid=D227C2A170C3A3E4&eid=82D2CD7E370B154A&journal_id=1006-8961&journal_name=中国图象图形学报&referenced_num=0&reference_num=0